Dictionaries



Introduction

Python provides us various options to store multiple
values under one variable name.

Dictionaries Is also a collection like a string, list and
tuple.

It is a very versatile data type.
There is a key In it with a value.(Key:value)

Dictionaries are mutable data types and it Is an
unordered collection in the form of key:value

In List, iIndex of a value Is important whereas In
dictionary, key of a value Is important.



Dictionary Creation

 To create a dictionary, it iIs needed to collect pairs of
key:value in “{ }".

<dictionary-name>={ <keyl1>:.<valuel><key2>:.<value2>,<key3>:<value3>.. .}
Example:
teachers={"Rajeev”."Math”, “APA”."Physics”,”APS":"Chemistry:"SB":"CS"}
In above given example :

“Rajeev”:."Math” “Rajeev” “Math”
“APA”:”Physics” “APA” “Physics”
“APS”:”"Chemistry”  “APA” “Chemistry”

IlS B” :”CS” IISBII llcsﬂ



Dictionary Creation

 Some examples of Dictionary are-
Dictl={ } #thisis an empty dictionary without any element.

DayofMonth= { January”:31, "February”:28, "March”:31, "April”:30, "May”:31, "June”:30,
"July”:31, "August”:31, "September”:30, "October”:31, "November”:30,
"December”:31}

FurnitureCount = { “Table™:10, “Chair”:13, “Desk™:16, “Stool”:15, “Rack™.15 }

— By above examples you can easily understand about the keys
and their values.

— One thing to be taken care of is that keys should always be of
Immutable type.

Note: Dictionary Is also known as associative array or mapping
or hashes .



Dictionary Creation

— Keys should always be of immutable type.

— If you try to make keys as mutable, python shown error In it.
For example-

Here key is a list which is
>>> dict = {[2,3]:"MyRoom"} of mutable type.
Traceback (most recent call last):

File "<pyshell#0>", line 1, 1n <module>
dict = {[2,3]:"MyRoom"}
TypeError: unhashable type: 'list'

\ Here error shows that you are trying to create a key
of mutable type which is not permitted.



Accessing a Dictionary

To access a value from dictionary, we need to use key
similarly as we use an index to access a value from a list.

We get the key from the pair of Key: value.

teachers={"Rajeev”’:"Math”, “APA”:"Physics”,”APS”."Chemistry:"SB”."CS"}

If we execute followmg statement from above example-

>>> teachers= Pijee\ "APA":"Physics "APS":"Chemistry",
>>> teachers[ Rajeev"]

'"Math'

>>> print ("Rajeev Teaches ", teachers["Rajeev"])

Rajeev Teaches Math

N
d
(

e

We have selected key “Rajeev” and on printing it, Math got
printed. Another example-

>>> d={"Vowell":'a',; "Vowel2™:'e', "Vowel3i"™:'i'; "Woweld":'0'; "VWoweld":'a"'}
>>> print (d["Vowel2"])
&
>>> print (d["Vowel5"])
u

If we access a non-key, error will come.



Traversal of a Dictionary

« To traverse a Dictionary, we use for loop. Syntax Is-

>>> d={5:"number","a":"String", (1,2) :"tuple"}
>>> for k in d:
print(k,"™ : ",d[k])

Here, notable thing is that every key of each pair of
5 . number dictionary d is coming in k variable of loop. After this
we can take output with the given format and with

a : String _
print statement.

(1, 2) : tuple

Assignment : Develop a dictionary of your friends in which key
will be your friend’s name and his number will be its value.



Traversal of Dictionary

* To access key and value we need to use keys() and
values().for example-

>>> d={"Vowell":'a', "Vowel2":'e', "Vowel3":'1', "Voweld":'o', "Vowel5":'u'}
>>> d.keys ()

dlct_keys([ Vowell', 'Vowel?', '"Vowel3', 'Voweld', 'Voweld'])

>>> d.values()

dict_values(['a', e, 1", 'o', 'u'l)

* d.keys( ) function will display only key.
 d.values () function will display value only.



Features of Dictionary

1. Unordered set: dictionary is a unordered collection of key:value pairs.

2. Not a sequence: like list, string and tuple , it is not a sequence because
It is a collection of unordered elements whereas a sequence is a collection
of indexed numbers to keep them in order.

3. Keys are used for its indexing because according to Python key can be of
Immutable type. String and numbers are of immutable type and therefore
can be used as a key. Example of keys are as under-

>>> d={0:"Key0",1:"Keyl","3":"KeyAsString", (4,5) : "KeyAsTuple”, "Hello":6}
>>> d[0]
'Key0'

>>> d[1]
"'Keyl'

>>> d["3"]
'KeyAsString'
>>> d[(4,5)]
'KeyAsTuple'
>>> d["Hello"]
6

Key of a Dictionary should always be of
immutable type like number, string or tuple
whereas value of a dictionary can be of any type.



Features of Dictionary

4. Keys should be unique : Because keys are used to identify
values so they should be unique.

5. Values of two unigue keys can be same.

6. Dictionary is mutable hence we can change value of a certain
key. For this, syntax is-

>>> d={0:"Key0",1l:"Keyl","3":"KeyAsString", (4,5) : "KeyAsTuple", "Hello":6}

>>> d["3"]="This is String"

>>> d

{0: "KeyO', 1: 'Keyl', "3": 'This is String', (4, 5): 'KeyAsTuple', 'Hello': 6}

4. Internally it is stored as a mapping. Its key:value are
connected to each other via an internal function called hash-
function**. Such process of linking is knows as mapping.

“*Hash-function is an internal algorithm to link a and its
value.



Working with Dictionary

« Here we will discuss about various operation of dictionary like element
adding, updation, deletion of an element etc. but first we will learn creation
of a dictionary.

* Dictionary initialization- For this we keep collection of pairs of
key:value separated by comma (,) and then place this
collection inside “{ }".

>>> Employee={'name':"'suresh', "'salary':15000, "age':34}
>>> Employee

{"name': 'suresh', 'salary': 15000, 'age': 34}

« Addition of key:value pair to an empty dictionary. There are
two ways to create an empty dictionary-

1. Employee={ } >>> Employee = {}
2. Employee = dict() >>> Employee['name']="Pankaj"'
>>> Employee['salary']=20000
After that use following syntax- >>> Employee
<dictionary>[<key>] = <value>




Working with Dictionary

3. Creation of a Dictionary with the pair of name and
value: dict( ) constructor is used to create dictionary
with the pairs of key and value. There are various

methods for this-
.

By passing Key:value pair as an argument:

>>> Employee=dict (name="Ramesh', salary=10000, age=24)

>>> Employee
{"name': 'Ramesh', 'salary': 10000, 'age': 24}

The point to be noted is that here no inverted commas were placed in
argument but they came automatically in dictionary.

By specifying Comma-separated key:value pair-
>>> Employee=dict ({"'name':'Rahul', 'age':24})

>>> Employee
{"name': 'Rahul', 'age': 24}




Working with Dictionary

Ill. By specifying Keys and values separately:
For this, we use zip() function in dict ( ) constructor-

>>> Employee

>>> Employee=dict (zip(('name', 'salary', 'age'), ("Mukesh',12000,26)))

{"name': "Mukesh', 'salary': 12000, 'Tage': 26}

V. By giving Key:value pair in the form of separate sequence:

>>> Employee=dict([['name', 'anand'], ['salary',14000], ['age',23]])

>>> Employee
{"name': 'anand', 'salary': 14000, Tage': 23}

By passing List

>>> Employee=dict ((['name', 'Angad'], ['salary',11000],["'age',29]))

>>> Employee . .
{"name': 'Angad', 'salary': 11000, 'age': 29} By passing tuple of a list

>>> Employee=dict ((('name', 'Suman'), ('salary',17000), (Tage',21)))

>>> Employee .
{'name': 'Suman', 'salary': 17000, 'age': 21) By passing tuple of tuple




Adding an element in Dictionary

following syntax is used to add an element in Dictionary-

>>> Employee=dict ((('name', 'Suman'), ('salary',17000), ('age',21)))
>>> Employee

{'name': 'Suman', 'salary': 17000, 'age': 21}
>>> Employee['Dept']="Sales!

>>> Employee _ J\\\\\\\“\\\\\\\\\\?
{"name': 'Suman', 'salary': 17000, T ': 21,

age': Dept': 'Sales'}

Nesting in Dictionary
look at the following example carefully in which element of a dictionary is
a dictionary itself.

Employee={'mukesh':{'age':23, "'salary':34000}, 'Meena':{"'age':27, "'salary':24000}
key 1n Employee:
print ("Employee", key,':") Employee mukesh :
print ('Age: ',str(Employee[key]['age'])) Age: 23

Salary: 34000
print('Salary: ',str(Employee[key]['salary'])) Enmiloiéﬁg;Meﬁﬂja :

Age: 27
Salary: 24000




Updation in a Dictionary

following syntax is used to update an element in Dictionary-
<dictionary>[<EXxistingKey>]=<value>

>>> Employee['Salary']=15000
>>> Employee

>>> Employee={'name':"'Sudha', 'Salary':10000, "age':24}

{"name': 'Sudha', 'Salary': 15000, 'age': 24}

WAP to create a dictionary containing names of employee as key and their salary as

value.

File Edit Format Run  Options Window Help
n=int (input ("Enter the Number of Employees"))
Employee={} #Empty Dictionary
a range (n) :
key=input ("Enter Name of the Employee")
value=int (input ("Enter Salary of Employee™))
Employee[key]=value
print ("The Dictionary is now 1is :")
print (Employee)

Output

Enter the Number of Employees3

Enter Name of the EmployeePavan

Enter Salary of Employee30000

Enter Name of the EmployeeRakesh

Enter Salary of Employeel2000

Enter Name of the EmployeeMukesh

Enter Salary of Employee20000

The Dictionary is now is :

{"Pavan': 30000, 'Rakesh': 12000, 'Mukesh'

: 20000}




Deletion of an element from a Dictionary

following two syntaxes can be used to delete an element form a
Dictionary. For deletion, key should be there otherwise python
will give error.

1. del <dictionary>[<key>]- it only deletes the value and

does not return deleted value.
>>> emp={"'Pavan': 30000, 'Rakesh': 12000, '"Mukesh': 20000}
>>> emp['Pavan']
>>> emp
{"Rakesh': 12000, '"Mukesh': 20000}

2. <dictionary>.pop(<key>) it returns the deleted value

after deletion.
>>> emp={'Pavan': 30000, 'Rakesh': 12000, "'Mukesh': 20000}
>>> emp.pop ('Rakesh'")

Value did not return after deletion.

Value returned after deletion.

12000
>>> emp.pop ('Aman', "Not Found") ,
'Not Found' <" Ifkeydoes not match, given

message will be printed. —



Detection of an element from a Dictionary

Membership operator is used to detect presence of an element
In a Dictionary.

1. — it gives true on finding the key otherwise gives false.
2. — it gives true on not finding the key otherwise gives false.

>>> emp={'Pavan': 30000, "Rakesh': 12000, 'Mukesh': 20000}
>>> 'Pavan' in emp

ii:e ‘Hari' in em * in and not in does not apply
- P on values, they can only work

False . | with keys.

>>> "Hari' not 1n emp

True

>>> 'Pavan' not 1in emp
False



Pretty Printing of a Dictionary

To print a Dictionary in a beautify manner, we need to import
json module. After that following syntax of dumps () will be used.

>>> 1mport json
>>> emp={'Pavan': 30000, 'Rakesh': 12000, "Mukesh': 20000}
>>> print (json.dumps (emp, indent=2))

{

"Pavan": 30000,
"Rakesh": 12000,
"Mukesh": 20000




Program to create a dictionary by counting words in a line

T 7501
statement "His Name 15 Panka]. \
father 15 a teacher. His \

father 15 a qood person"
w=statement. split ()
0={}
for ¢ 1n w:
key=c
11 key ot in d:
count=w.count (key
d[key]=count
print ("Counting frequencies in list\n",w)
print (json.dumps (d, 1ndent=1))

Counting frequencies in list

['His', 'Name', 'is', 'Panka].', '
His', 'father', 'is', 'a', 'teacher
', 'His', 'father', 'is', 'a', 'go
od", 'person']

{

"His": 3 Here a dictionary is

"Name": 1, created of words

myigh- 3, and their frequency.

"Pankaj.": 1

"father": 2,

LPLE 2;

"Teacher.": 1,

"good": 1

"person": 1

}




Dictionary Function and Method

1. len() Method : it tells the length of dictionary.

>>> emp={'Pavan': 30000, 'Rakesh': 12000, 'Mukesh': 20000}
>>> len (emp)
3
2. clear() Method : it empties the dictionary.
>>> emp={'Pavan': 30000, 'Rakesh': 12000, "Mukesh': 20000}
>>> emp.clear ()
>>> emp
{1
3. get() Method : it returns value of the given key.
>>> emp={'Pavan': 30000, 'Rakesh': 12000, "Mukesh': 20000}

>>> emp.get ('Rakesh’)

12000
>>> emp.get ('Ankit"', "Not Found")
'"Not Found' 6\\\\\

It works similarly as <dictionary>[<key>]

On non finding of a key, default message can be

given.




Dictionary Function and Method

4. items( ) Method : it returns all items of a dictionary in the form

of tuple of (key:value).
>>> emp={'Pavan': 30000, 'Rakesh': 12000, "Mukesh': 20000}
>>> mylist=emp.items ()

>>> mylist
dict_items([('Pavan', 30000), ('Rakesh', 12000), ('Mukesh', 20000)1])

5. keys() Method : it returns list of dictionary keys.
>>> emp={'Pavan': 30000, 'Rakesh': 12000, "Mukesh': 20000}

>>> emp.keys ()
dict keys(['Pavan', 'Rakesh', 'Mukesh'])

6. values() Method : it returns list of dictionary values.
>>> emp={'Pavan': 30000, "Rakesh': 12000, "Mukesh': 20000}

>>> emp.values ()
dict values([30000, 12000, 20000])




Dictionary Function and Method

7. Update () Method: This function merge the pair of key:value
of a dictionary into other dictionary. Change and addition in
this is possible as per need. Example-

>>> empl={ 'name':"'Suresh', "salary':10000, "age':24}

>>> emp2={'name':'siya', "salary':45000, 'dept':"'sales"'}

>>> empl.update (emp2)

>>> empl

{"name': 'siya', 'salary': 45000, 'age': 24, 'dept': 'sales'}
>>> emp2

{"name': 'siya', 'salary': 45000, 'dept': 'sales'}

In the above given example, you can see that change is done in
the values of similar keys whereas dissimilar keys got joined with
their values.



Thank you



